ELEMENTAL ANALYSIS OF PARTS OF CHILI

Myint Myint Maw¹ and Win Sin²

Abstract

Different parts of raw green and ripe red chilies have been analysed using EDX-7000 to study the elements contained in each parts and the change in concentrations of elements due to varying parts, such as seed, skin or stalk. The major elements found in each part are potassium, sulphur, copper and iron.

Keywords: Chili, EDXRF, Elemental Analysis

Introduction

Chili peppers are one of the very popular spices known for their medicinal and health benefiting properties. The chili is a fruit pod of the plant belonging to the nightshade family (Solanaceae), of the genus, **Capsicum**.

Chili peppers contain a substance called capsaicin, which gives peppers their characteristic pungency, producing mild to intense spice when eaten. Capsaicin is being studied as an effective treatment for sensory nerve fibre disorders, including pain associated with arthritis, psoriasis, and diabetic neuropathy.

Red chili peppers have been shown to reduce blood cholesterol, triglyceride levels, and platelet aggregation, while increasing the body's ability to dissolve fibrin, a substance integral to the formation of blood clots. Cultures where hot pepper is used liberally have a much lower rate of heart attack, stroke and pulmonary embolism.

Chili peppers contains Vitamin A, Vitamin C, Vitamin B6, Vitamin K1, Potassium and Copper. Chilli peppers are rich in various vitamins and minerals but usually eaten in small amounts - so they don't contribute significantly to our daily micronutrient intake.

We are interested in minerals contained in chili, the concentration of minerals in each part of fruit, and comparison to green and red ones. So we have chosen EDXRF method to embody the minerals contained in chili.

Theoretical Background

When a sample is irradiated with x-rays from an x-ray tube, the atoms in the sample generate unique x-rays that are emitted from the sample. Such x-rays are known as "fluorescent x-rays" and they have a unique wavelength and energy that is characteristic of each element that generates them. Consequently, qualitative analysis can be performed by investigating the wavelengths of the x-rays. As the fluorescent x-ray intensity is a function of the concentration, quantitative analysis is also possible by measuring the amount of x-rays at the wavelength specific to each element.

¹ Dr, Assistant Lecturer, Department of Physics, University of Yangon

² Dr, Associate Professor, Department of Physics, West University of Yangon

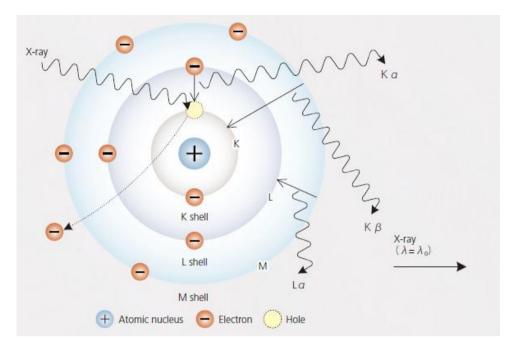


Figure 2.1 Electron Paths and Principle of X-ray Generation Expressed as a Bohr Model

Main Specifications of Shimadzu E	EDX-7000 Spectrometer
-----------------------------------	-----------------------

	F
Measurement principle	X-ray fluorescence spectrometer
Measurement method	Energy dispersive
Target samples	Solids, liquids, powders
Measuring range	11 Na to 92 U
X-ray Generator (EDX-7000)	
X-ray tube	Rhodium (Rh) target
Voltage	4 kV to 50 kV
Current	1μA to 1000 μA
Cooling method	air cooling (with a fan)
Irradiated area	10 mm diameter (standard)
Primary filters	Automatic selection from among 5 types of filter
Detector	
Туре	Silicon drift detector (SDD)
Sample Chamber	
Measurement Atmosphere	Air, vacuum, helium
Sample replacement	12- sample turret
Sample observations	Semiconductor camera

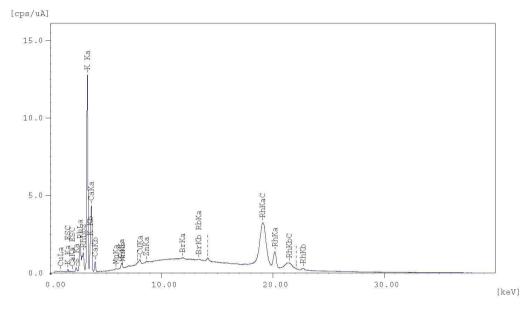
Sample Collection and Preparation

Green and red chilies grown at home were collected. Stalk, seeds and skin were separated and placed in the cells covering with film. The cells were put into chamber and analysed.

Results and Discussions

The elemental concentrations of various parts of chili are shown in Table 1 and the respective graph is shown in Figure 1. Major elements found are potassium, sulfur and calcium. The minor elements found are copper, iron and zinc.

The elemental concentrations of various parts of green chili are shown in Table 2 and the respective graph is shown in Figure 2. Major elements found are potassium, sulfur and calcium. The minor elements found are copper, iron and zinc. Potassium is mostly found in stalk. Sulfur is mostly found in stalk and seed. Calcium is only found in stalk. Seeds contain more copper than stalk and skin. Iron is found in all parts.


The elemental concentrations of various parts of red chili are shown in Table 3 and the respective graph is shown in Figure 3. Major elements found are potassium, sulfur and calcium. The minor elements found are copper, iron and zinc. Potassium is mostly found in stalk. Sulfur is mostly found in stalk and seed. Calcium is found in all parts. Copper and Iron are found in all parts.

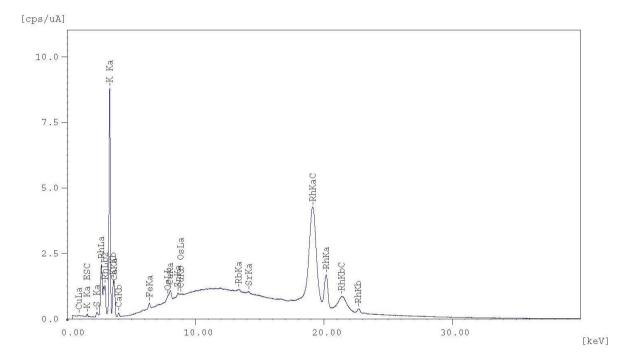
The comparisons of minerals contained in stalks of green and red chilies are shown in Figure 4. The stalk of Red chili contains more minerals than stalk of green chili.

The comparisons of minerals contained in seeds of green and red chilies are shown in Figure 5. Both contain nearly the same minerals. Calcium is only found in red chili seeds.

The comparisons of minerals contained in fruit-wall of green and red chilies are shown in Figure 6. The fruit-wall of red chili contains more minerals than that of green chili.

Sample : Chilli_R_Bc Operator: DRWLO Comment : with mylar Group : FP balance Date : 2019-03-15	film 10mm				
Measurement Condition	1				
Instrument: EDX-7000	Atmosphere:	Air Collimator:	10(mm)	Sample Cup:M	ylar
Analyte	TG kV uA	FI Acq.(keV)	Anal.(keV)	Time(sec)	DT(%)
Al-U	Rh 50 69-7	Auto 0 - 40	0.00-40.00	Live- 100	30

Qualitative Result


Element: Cu, K , Ca, S , Rh, Mn, Fe, Zn, Br, Rb

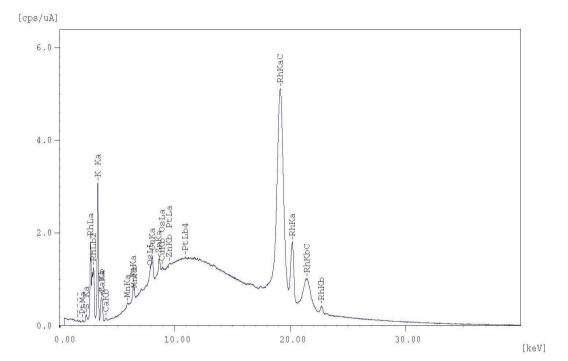
Analyte	Result		[3-	sigma]	ProcCal	c. Line	Int.(cps/uA)
K	1.013	8	[0.004]	Quan-FP	K Ka	75.1816
Ca	0.198	00	1	0.001]	Quan-FP	CaKa	24.0894
S	0.086	00	1	0.003]	Quan-FP	S Ka	1.4851
Fe	0.002	alo]	0.000]	Quan-FP	FeKa	2.4435
Cu	0.001	%]	0.000]	Quan-FP	CuKa	2.9934
Zn	0.000	00	[0.000]	Quan-FP	ZnKa	1.0496
Mn	0.000	010	1	0.000]	Quan-FP	MnKa	0.3159
Br	0.000	8]	0.000]	Quan-FP	BrKa	1.1855
Rb	0.000	%	1	0.000]	Quan-FP	RbKa	0.9106
CH	98.699	%	- I-]	Balance		

Sample	÷	Chilli_G_Bo	one
Operator		DRWLO	
Comment	:	with mylar	film
Group	:	FP balance	10mm
Date	:	2019-03-15	12:43:17

Condition

Instrument: EDX-7000	Atmos	phere:	Air	Collimator:	10(mm)	Sample Cup:	Mylar
Analyte	TG kV	uA	FI	Acq.(keV)	Anal.(keV)	Time(sec)	DT(%)
Al-U	Rh 50	61-Au	uto	- 0 - 40	0.00-40.00	Live- 100	30

Qualitative Result

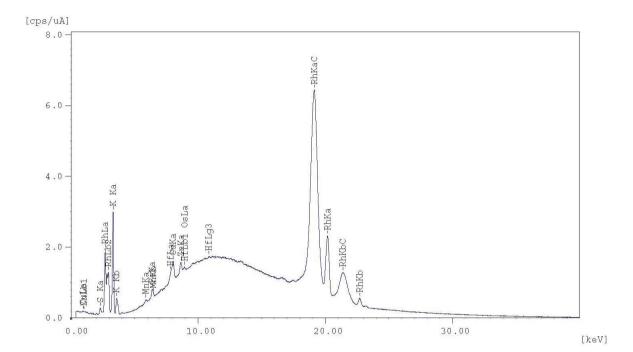

Element: Cu, K , S , Rh, Ca, Fe, Os, Zn, Rb, Sr

Analyte	Result		[3-sigma] ProcCal	c. Line	Int.(cps/uA)
K	0.676	%	[0.004] Quan-FP	K Ka	51.3476
S	0.063	olo	[0.003] Quan-FP	S Ka	1.1038
Ca	0.039	olo	[0.000] Quan-FP	CaKa	5.1626
Cu	0.001	olo	[0.000] Quan-FP	CuKa	3.3525
Fe	0.001	0/0	[0.000] Quan-FP	FeKa	1.5709
Zn	0.000	olo	[0.000] Quan-FP	ZnKa	1.6310
Os	0.000	olo	[0.000] Quan-FP	OsLa	0.5811
Rb	0.000	010	[0.000] Quan-FP	RbKa	1.2438
Sr	0.000	%	[0.000] Quan-FP	SrKa	1.0075
CH	99.218	00	[] Balance		

DT(%)

.

Sample : Chilli_R_Se Operator: DRWLO Comment : with mylar Group : FP balance Date : 2019-03-15	film 10mm	2					
Measurement Condition		J					
Instrument: EDX-7000	Atmos	phere:	Air C	ollimator:	10(mm)	Sample Cup:	Mylar
Analyte	TG kV	uA	FI	Acq.(keV)	Anal.(keV)	Time(sec)	DT (%



Qualitative Result

Element: Pt, S , Rh, K , Ca, Mn, Fe, Os, Cu, Zn

Analyte	Result		[3-sigma]	ProcCal	c. Line	Int.(cps/uA)
K	0.224	%	[0.002]	Quan-FP	K Ka	17.4608
S	0.052	%	[0.003]	Quan-FP	S Ka	0.9052
Ca	0.014	%	[0.001]	Quan-FP	CaKa	2.1021
Fe	0.002	%	[0.000]	Quan-FP	FeKa	2.6759
Cu	0.001	%	[0.000]	Quan-FP	CuKa	5.0654
Zn	0.001	%	[0.000]	Quan-FP	ZnKa	3.5531
Mn	0.001	%	[0.000]	Quan-FP	MnKa	0.6309
Os	0.000	%	[0.000]	Quan-FP	OsLa	0.6922
Pt	0.000	%	[0.000]	Quan-FP	PtLa	0.5159
CH	99.704	%	[]	Balance		

Sample : Chilli_G_Se Operator: DRWLO Comment : with mylar Group : FP balance Date : 2019-03-15 Measurement Condition	film 10mm 12:40:41				
Instrument: EDX-7000	Atmosphere:	Air Collimator:	10(mm)	Sample Cup:	Mylar
Analyte	TG kV uA	FI Acq.(keV)	Anal.(keV)	Time(sec)	DT(%)
Al-U	Rh 50 44-A	uto 0 - 40	0.00-40.00	Live- 100	30

Qualitative Result

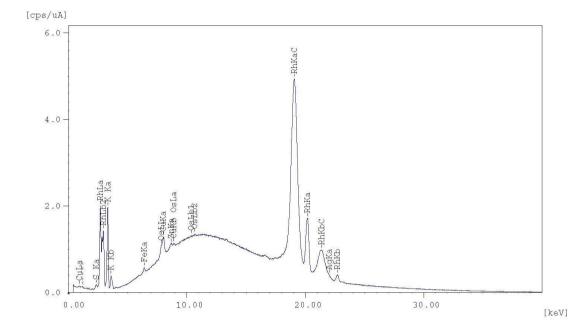
Element: Cu, Zn, S , Rh, K , Mn, Fe, Hf, Os

Analyte	Result		[3-	sigma]	ProcCalc	. Line	Int.(cps/uA)
K	0.219	%]	0.002]	Quan-FP	K Ka	16.9864
S	0.063	010	[0.004]	Quan-FP	S Ka	1.0936
Hf	0.003	010	[0.000]	Quan-FP	HfLa	2.8399
Cu	0.002	00	[0.000]	Quan-FP	CuKa	5.2118
Fe	0.001	0/0	[0.000]	Quan-FP	FeKa	1.9560
Zn	0.001	olo	[0.000]	Quan-FP	ZnKa	3.5360
Mn	0.001	0/0	[0.000]	Quan-FP	MnKa	0.6297
Os	0.000	00	[0.000]	Quan-FP	OsLa	0.3127
CH	99.712	0%	[-]	Balance		

			ator: 10(mm)		Mylar
Analyte	TG kV uA		(keV) Anal.(keV)		DT(%)
Al-U	Rh 50 71-2	Auto 0 -	40 0.00-40.00	Live- 100	30
4.00 - ¹⁰ 3.00 - ¹⁰ 3.00 -					
RhLa					

.00 mind the				
0.00	10.00	20.00	30.00	[ke

Qualitative Result


Element: Cu, K , Si, P , S , Rh, Ca, Fe, Os, Zn

Analyte	Result		[3-sigma]	ProcCal	c. Line	Int.(cps/uA)
 К	0.256	8	[0.002]	Quan-FP	K Ka	19.6584
Si	0.095	010	[0.026]	Quan-FP	SiKa	0.1088
S	0.042	010	[0.003]	Quan-FP	S Ka	0.7297
P	0.025	%	[0.006]	Quan-FP	P Ka	0.1207
Ca	0.008	%	[0.001]	Quan-FP	CaKa	1.1951
Cu	0.001	010	[0.000]	Quan-FP	CuKa	3.4240
Fe	0.001	010	[0.000]	Quan-FP	FeKa	1.2965
Zn	0.000	010	[0.000]	Quan-FP	ZnKa	1.7208
Os	0.000	010	[0.000]	Quan-FP	OsLa	0.6493
CH	99.571	8	[]	Balance		

```
Sample : Chilli_G_Shell
Operator: DRWLO
Comment : with mylar film
Group : FP balance 10mm
Date : 2019-03-15 12:38:04
```

Measurement Condition

Instrument: EDX-7000	Atmosphe	re: Air	Collimator:	10(mm)	Sample Cup:N	lylar
Analyte	TG kV u	A FI	Acq.(keV)	Anal.(keV)	Time(sec)	DT(%)
Al-U	Rh 50 5	8-Auto	0 - 40	0.00-40.00	Live- 100	31

Qualitative Result

Element: Cu, S , Rh, K , Fe, Os, Zn, Ag

```
Quantitative Result
```

Analyte	Result		[3-sigma]	ProcCal	c. Line	Int.(cps/uA)
K	0.140	%	[0.002]	Quan-FP	K Ka	10.9472
S	0.039	00	[0.003]	Quan-FP	S Ka	0.6794
Cu	0.001	%	[0.000]	Quan-FP	CuKa	3.9761
Ag	0.001	0/0	[0.000]	Quan-FP	AgKa	1.3351
Fe	0.001	0/0	[0.000]	Quan-FP	FeKa	0.8829
Zn	0.000	010	[0.000]	Quan-FP	ZnKa	1.7980
Os	0.000	010	[0.000]	Quan-FP	OsLa	0.7262
CH	99.818	0/0	[]	Balance		

Floment		Green Cl	nili	Red Chili			
Element	Stalk	Seeds	fruit-wall	Stalk	Seeds	fruit-wall	
K	0.676	0.219	0.140	1.013	0.224	0.256	
S	0.063	0.063	0.039	0.086	0.052	0.042	
Ca	0.039	0.000	0.000	0.198	0.014	0.008	
Cu	0.001	0.002	0.001	0.001	0.001	0.001	
Fe	0.001	0.001	0.001	0.002	0.002	0.001	
Zn	0.000	0.001	0.000	0.000	0.001	0.000	
Hf	0.000	0.003	0.000	0.000	0.000	0.000	
Mn	0.000	0.001	0.000	0.000	0.001	0.000	
Ag	0.000	0.000	0.001	0.000	0.000	0.000	
Si	0.000	0.000	0.000	0.000	0.000	0.095	
Р	0.000	0.000	0.000	0.000	0.000	0.025	

Table 1 Elemental Concentration (W%) of parts of green and red chilies

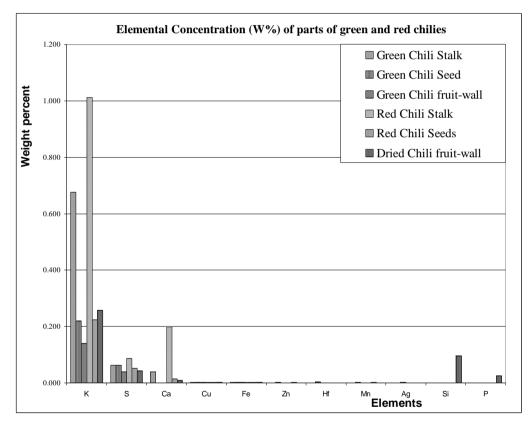
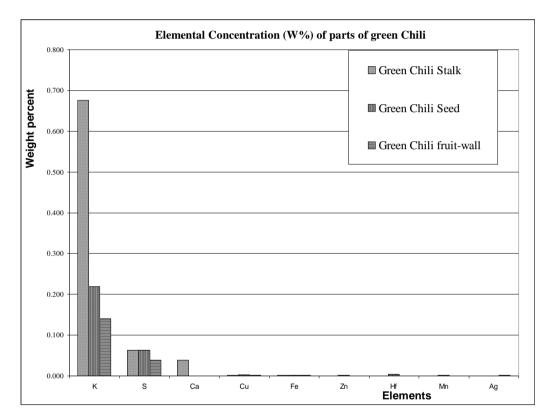
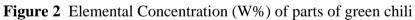




Figure 1 Elemental Concentration (W%) of parts of green and red chilies

Element	Stalk	Seeds	fruit-wall
K	0.676	0.219	0.140
S	0.063	0.063	0.039
Ca	0.039	0.000	0.000
Cu	0.001	0.002	0.001
Fe	0.001	0.001	0.001
Zn	0.000	0.001	0.000
Hf	0.000	0.003	0.000
Mn	0.000	0.001	0.000
Ag	0.000	0.000	0.001

Table 2 Elemental Concentration (W%) of parts of green chili

Table 3 Elen	nental Concen	tration (W%	b) of pai	rts of red chili
----------------	---------------	-------------	-----------	------------------

Element	Stalk	Seeds	fruit-wall
K	1.013	0.224	0.256
S	0.086	0.052	0.042
Ca	0.198	0.014	0.008
Cu	0.001	0.001	0.001
Fe	0.002	0.002	0.001
Zn	0.000	0.001	0.000
Mn	0.000	0.001	0.000
Si	0.000	0.000	0.095
Р	0.000	0.000	0.025

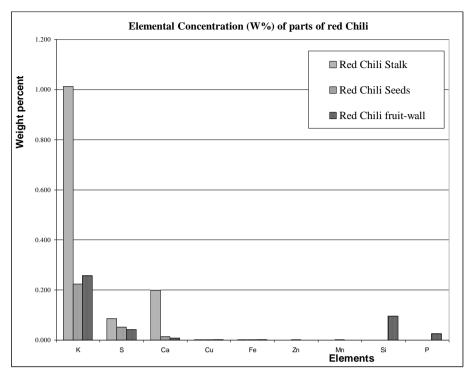


Figure 3 Elemental Concentration (W%) of parts of red chili

Table 4 Comparison of Elemental Concentration (W%) of stalks of green and red chilies

Element	Green Chili Stalk	Red Chili Stalk
K	0.676	1.013
S	0.063	0.086
Ca	0.039	0.198
Cu	0.001	0.001
Fe	0.001	0.002

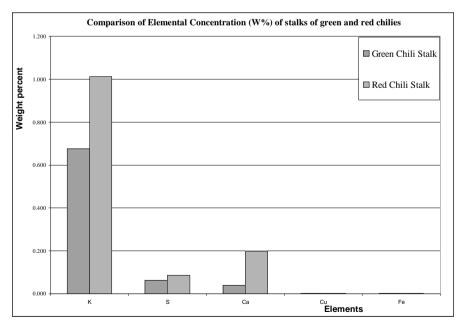


Figure 4 Comparison of Elemental Concentration (W%) of stalks of green and red chilies

Element	Green Chili Seeds	Red Chili Seeds
K	0.219	0.224
S	0.063	0.052
Ca	0.000	0.014
Cu	0.002	0.001
Fe	0.001	0.002
Zn	0.001	0.001
Hf	0.003	0.000
Mn	0.001	0.001

Table 5 Comparison of Elemental Concentration (W%) of seeds of green and red chilies

Table 6	Comparison	of Elementa	l Concentration	(W%) o	f fruit-walls	of green	and red
	chilies						

Element	Green Chili fruit-wall	Red Chili fruit-wall
K	0.140	0.256
S	0.039	0.042
Ca	0.000	0.008
Cu	0.001	0.001
Fe	0.001	0.001
Ag	0.001	0.000
Si	0.000	0.095
Р	0.000	0.025

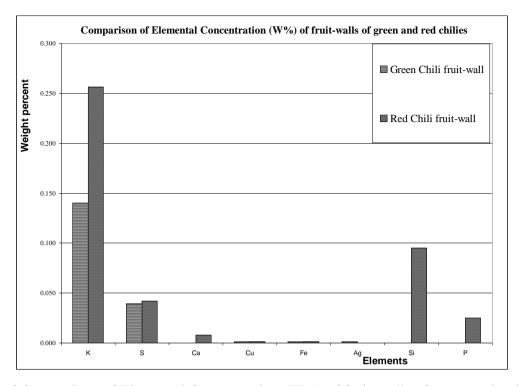


Figure 6 Comparison of Elemental Concentration (W%) of fruit-walls of green and red chilies

Conclusion

Potassium lowers blood pressure, protects against loss of muscle mass, preserves bone mineral density, and reduces the formation of kidney stones.

Sulfur makes up vital amino acids used to create protein for cells, tissues, hormones, enzymes, and antibodies. Sulfur is needed for insulin production.

Calcium can build and maintain strong bones. Our heart, muscles and nerves also need calcium to function properly.

Copper is essential for infant growth, bone strength, red and white blood cell maturation, iron transport, cholesterol and glucose metabolism, heart muscle contraction and brain development.

From our study, chili is found to contain essential macrominerals. It is surprisingly found that the chili stalks which we throw away contain more valuable minerals. Red chili, not dried chili, is better than green chili.

Acknowledgements

I would like to thank Professor Dr Khin Khin Win, Head of Department of Physics, University of Yangon for her kind permission to carry out this research.

I would like to express my sincere thanks to Dr Myo Lwin, Professor, Department of Physics, Dr Ye Chan, Professor and Head, Universities' Resarch Centre, Dr Aye Aye Thant, Professor, Department of Physics, Dr Yin Maung Maung, Professor, Department of Physics and Dr Than Zaw Oo, Professor, Universities' Resarch Centre, University of Yangon for their suggestion to carry out this work.

References

Cesareo R (2000) "X-Ray Physics: Interaction with Matter, Production, Detection" (Bologna: La Rivista del Nuovo Cimento)

Chevallier, A. (1996). The encyclopedia of medicinal plants. London: Dorling Kindersely Limited.

Donal E Leydon (1999) "Fundamentals of X-Ray Spectrometry as Applied to Energy Dispersive Techniques", Spectrace Instruments Technical Paper

Jekins RE (1999) "X-Ray Fluorescence Spectrometry" (New York: Wiley- Interscience)

Peter N. Brouwer, (2003) Theory of XRF 1st ed PANalytical B.V The Netherlands.

Rene E, Van Grieken, Andrzej (1993) " Handbook of X ray Spectrometry Methods and Techniques" (New York : Marcle Dekker)

Tertain R & Classie F (1982) "Principles of Quantitative X ray Fluorescence Analysis" (London: Heyden)